Virtual reality for glaucoma

Head-mounted VR goggles use light to stimulate targeted areas in the patient’s visual field.

Virtual reality for glaucoma
Colin Kerr
Colin Kerr
Published: Saturday, June 1, 2019
A wearable brain-based device called NGoggle that incorporates virtual reality could help improve glaucoma diagnosis and prevent vision loss. Duke University researchers funded by the National Eye Institute (NEI) have launched a clinical study testing the device in hopes that it could decrease the burden of glaucoma. The device consists of head-mounted virtual reality goggles that use light to stimulate targeted areas in a patient’s visual field. “Current methods for glaucoma screening and monitoring are relatively primitive,” said Felipe Medeiros MD, PhD, a study investigator, a co-founder of NGoggle, Inc, and a professor of ophthalmology at Duke University School of Medicine. Standard screening tests measure pressure within the eye. Although elevated intraocular pressure is the main risk factor for glaucoma, not all cases of the disease are associated with high pressure. Screening for glaucoma based on single intraocular pressure measurements may fail to detect up to 80% of the patients with the disease, Dr Medeiros said. “That’s because many people develop optic nerve damage from glaucoma at relatively low intraocular pressure levels. In addition, pressure fluctuates widely throughout the day and on different days, making it difficult to rely on a single measurement for diagnosis and screening. Importantly, many subjects may also have high intraocular pressure and never develop damage to the optic nerve.” Standard automated perimetry (SAP) is usually used to monitor glaucoma progression. SAP requires patients to click a button when lights are randomly shown for a brief time in their peripheral vision. In contrast to SAP, the NGoggle objectively assesses peripheral loss of vision without requiring subjective input from the patient. NGoggle gauges brain activity in response to signals received from the eyes. Diminished activity may indicate functional loss from glaucoma. The virtual reality goggles are integrated with wireless electroencephalography (EEG), a series of electrodes that adhere to the scalp to measure brain activity. Within a few minutes, the NGoggle algorithm captures and analyses enough data to report how well each eye communicates with the brain across the patient’s field of vision. The device’s virtual reality capabilities can be greatly leveraged, Dr Medeiros said. People could be tested for glaucoma as they play a VR-based video game or explore a virtual art gallery. “The possibilities are endless for making it an engaging experience, which would go a long way toward ensuring that people use it and receive the treatment they need,” he said. bit.ly/ET-NGoggle
Tags: glaucoma, virtual reality
Latest Articles
Nutrition and the Eye: A Recipe for Success

A look at the evidence for tasty ways of lowering risks and improving ocular health.

Read more...

New Award to Encourage Research into Sustainable Practices

Read more...

Sharing a Vision for the Future

ESCRS leaders update Trieste conference on ESCRS initiatives.

Read more...

Extending Depth of Satisfaction

The ESCRS Eye Journal Club discuss a new study reviewing the causes and management of dissatisfaction after implantation of an EDOF IOL.

Read more...

Conventional Versus Laser-Assisted Cataract Surgery

Evidence favours conventional technique in most cases.

Read more...

AI Scribing and Telephone Management

Automating note-taking and call centres could boost practice efficiency.

Read more...

AI Analysis and the Cornea

A combination of better imaging and AI deep learning could significantly improve corneal imaging and diagnosis.

Read more...

Cooking a Feast for the Eyes

A cookbook to promote ocular health through thoughtful and traditional cuisine.

Read more...

Need to Know: Spherical Aberration

Part three of this series examines spherical aberration and its influence on higher-order aberrations.

Read more...

Generating AI’s Potential

How generative AI impacts medicine, society, and the environment.

Read more...