Virtual reality for glaucoma
Head-mounted VR goggles use light to stimulate targeted areas in the patient’s visual field.


Colin Kerr
Published: Saturday, June 1, 2019
A wearable brain-based device called NGoggle that incorporates virtual reality could help improve glaucoma diagnosis and prevent vision loss. Duke University researchers funded by the National Eye Institute (NEI) have launched a clinical study testing the device in hopes that it could decrease the burden of glaucoma.
The device consists of head-mounted virtual reality goggles that use light to stimulate targeted areas in a patient’s visual field.
“Current methods for glaucoma screening and monitoring are relatively primitive,” said Felipe Medeiros MD, PhD, a study investigator, a co-founder of NGoggle, Inc, and a professor of ophthalmology at Duke University School of Medicine.
Standard screening tests measure pressure within the eye. Although elevated intraocular pressure is the main risk factor for glaucoma, not all cases of the disease are associated with high pressure. Screening for glaucoma based on single intraocular pressure measurements may fail to detect up to 80% of the patients with the disease, Dr Medeiros said. “That’s because many people develop optic nerve damage from glaucoma at relatively low intraocular pressure levels. In addition, pressure fluctuates widely throughout the day and on different days, making it difficult to rely on a single measurement for diagnosis and screening. Importantly, many subjects may also have high intraocular pressure and never develop damage to the optic nerve.”
Standard automated perimetry (SAP) is usually used to monitor glaucoma progression. SAP requires patients to click a button when lights are randomly shown for a brief time in their peripheral vision.
In contrast to SAP, the NGoggle objectively assesses peripheral loss of vision without requiring subjective input from the patient. NGoggle gauges brain activity in response to signals received from the eyes. Diminished activity may indicate functional loss from glaucoma.
The virtual reality goggles are integrated with wireless electroencephalography (EEG), a series of electrodes that adhere to the scalp to measure brain activity. Within a few minutes, the NGoggle algorithm captures and analyses enough data to report how well each eye communicates with the brain across the patient’s field of vision.
The device’s virtual reality capabilities can be greatly leveraged, Dr Medeiros said. People could be tested for glaucoma as they play a VR-based video game or explore a virtual art gallery. “The possibilities are endless for making it an engaging experience, which would go a long way toward ensuring that people use it and receive the treatment they need,” he said.
bit.ly/ET-NGoggle
Tags: glaucoma, virtual reality
Latest Articles
Beyond the Numbers
Empowering patient participation fosters continuous innovation in cataract surgery.
Thinking Beyond the Surgery Room
Practice management workshop focuses on financial operations and AI business applications.
Aid Cuts Threaten Global Eye Care Progress
USAID closure leads retreat in development assistance.
Supplement: ESCRS Clinical Trends Series: Presbyopia
Nutrition and the Eye: A Recipe for Success
A look at the evidence for tasty ways of lowering risks and improving ocular health.
New Award to Encourage Research into Sustainable Practices
Sharing a Vision for the Future
ESCRS leaders update Trieste conference on ESCRS initiatives.
Extending Depth of Satisfaction
The ESCRS Eye Journal Club discuss a new study reviewing the causes and management of dissatisfaction after implantation of an EDOF IOL.
Conventional Versus Laser-Assisted Cataract Surgery
Evidence favours conventional technique in most cases.
AI Scribing and Telephone Management
Automating note-taking and call centres could boost practice efficiency.