Exciting potential of artificial intelligence applications

Exciting potential of artificial intelligence applications
Dermot McGrath
Dermot McGrath
Published: Thursday, September 20, 2018
Deep learning and advanced artificial intelligence (AI) applications hold exciting potential in diagnosing and treating a wide range of eye diseases and are already making an impact on current clinical practice, delegates attending yesterday’s EURETINA symposium on AI were told. Chaired by Tariq M Aslam FRCS, PhD, the symposium “Innovations in Ophthalmology: Spotlight on Artificial Intelligence Applications” provided a broad overview of recent innovations in the field of AI and highlighted the vast potential of machine technology to provide more efficient and objective analysis of images and prediction of disease progression. “There is little doubt that AI is probably at the peak of the famous hype curve at the moment and everybody from big pharma to the retinal physician wants to be a part of the revolution,” said Adnan Tufail, MBBS, MD, FRCOphth in his discussion on the future of AI applications in ophthalmology. “We should be aware that a trough of disappointment inevitably follows the peak of interest, but AI is definitely here to stay. We will see some sustained genuine benefits that are going to impact our clinical practice,” he said. While there was understandable anxiety about the role of technology in day-to-day practice, Dr Tufail said that the benefits will ultimately far outweigh the risks. “The bottom line is that AI is not going to put us out of a job, but we need to embrace this technology to make us the best retinal specialists that we can possibly be,” he said. The possibility of detecting and quantifying macular fluid in conventional optical coherence tomography (OCT) images using deep learning was discussed by Ursula Schmidt-Erfurth MD, PhD. “AI enables the recognition of patterns based on decision trees. It allows for automated segmentation, quantification of lesions, pattern recognition, prediction of recurrence and progression, and structural and functional correlation at a much faster rate than humans can achieve,” she said. She told the audience that her research group in Vienna has made enormous progress in the development and validation of a fully automated method to detect and quantify macular fluid in OCT. “Deep learning in retinal image analysis achieves excellent accuracy for the differential detection of retinal fluid types across the most prevalent exudative macular diseases and OCT devices. Furthermore, quantification of fluid achieves a high level of concordance with manual expert assessment,” she said.
Tags: retina
Latest Articles
Nutrition and the Eye: A Recipe for Success

A look at the evidence for tasty ways of lowering risks and improving ocular health.

Read more...

New Award to Encourage Research into Sustainable Practices

Read more...

Sharing a Vision for the Future

ESCRS leaders update Trieste conference on ESCRS initiatives.

Read more...

Extending Depth of Satisfaction

The ESCRS Eye Journal Club discuss a new study reviewing the causes and management of dissatisfaction after implantation of an EDOF IOL.

Read more...

Conventional Versus Laser-Assisted Cataract Surgery

Evidence favours conventional technique in most cases.

Read more...

AI Scribing and Telephone Management

Automating note-taking and call centres could boost practice efficiency.

Read more...

AI Analysis and the Cornea

A combination of better imaging and AI deep learning could significantly improve corneal imaging and diagnosis.

Read more...

Cooking a Feast for the Eyes

A cookbook to promote ocular health through thoughtful and traditional cuisine.

Read more...

Need to Know: Spherical Aberration

Part three of this series examines spherical aberration and its influence on higher-order aberrations.

Read more...

Generating AI’s Potential

How generative AI impacts medicine, society, and the environment.

Read more...